Why Use Fish as Bioindicators?

The world’s oceans and waterways are key sources of mercury (Hg) found in fish and wildlife. A variety of species are used as bioindicators to provide important information on the impacts of mercury pollution and potential risks related to human health. For example, young fish can reflect rapid changes of environmental mercury loads; long-lived predatory fish may indicate concern for human health.

What are the Risks to Human Health?

Frequent consumption of certain types of seafood* is the primary pathway for methylmercury (MeHg) exposure in humans. Continuous exposure to MeHg, the organic and more toxic form of mercury, is known to affect neurological development in children and is also linked to cardiovascular disease in adults.

Some larger species of fish and marine mammals may contain mercury concentrations that exceed safe levels for human consumption. This is of particular importance to vulnerable populations including children, pregnant women, and indigenous communities that rely on seafood as a major protein source.

*Seafood includes marine and freshwater fish, shellfish, and marine mammals.

Figure 1. Level of concern for mercury in seafood commonly consumed in Trinidad and Tobago (based on global Hg averages, which may differ from local Hg concentrations). The infographic may not match all focal species samples for Hg. Consumption thresholds are determined by the Great Lakes Fish Advisory Workgroup.
Mercury Biomonitoring in Trinidad and Tobago

Biomonitoring is the process of assessing the health of organisms and ecosystems and tracking changes over time.

1. Trinidad and Tobago sent BRI 79 muscle samples from ten different species of fish consumed locally.
2. Samples were analyzed for total mercury (THg) at BRI’s Wildlife Toxicology Lab and results were compiled into a report submitted to government representatives.
3. THg concentrations in seafood from Trinidad and Tobago are considered low. Seventy-nine percent of samples analyzed had concentrations below the GLC guidelines\(^1\) for human consumption.

4. THg concentrations varied between species along a trophic level gradient. Predatory fish (e.g., puppy shark) have higher mean THg concentrations than lower trophic level species (e.g., whitemouth croaker).
5. Next steps: A more detailed assessment of THg concentrations in commonly consumed species in Trinidad and Tobago would help to provide important information to fisherman and consumers about the risks associated with consuming different species.

Benefits of Biomonitoring in Trinidad and Tobago

- Biomonitoring efforts build Trinidad and Tobago’s capacity for complying with the Minamata Convention on Mercury, which in Article 19 states that “Parties shall endeavour to cooperate to develop and improve... monitoring of levels of mercury and mercury compounds in... fish, marine mammals, sea turtles and birds...”
- Biomonitoring provides information on spatial patterns of mercury exposure in Trinidad and Tobago, including the ability to identify any areas of high exposure representing a risk to human or ecological health.
- Trinidad and Tobago’s country specific data was included in a global database of mercury content in seafood and freshwater fish. These additional data will help with understanding the global scope of mercury contamination in food sources.
- The relevant government entities in Trinidad and Tobago were informed of exposure risks from the frequent consumption of seafood by the general public and regular consumers (including vulnerable populations) of seafood. Fish consumption is the primary pathway for mercury exposure in humans.