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Resting Metabolic Rates of Adult Northern Shrikes (Lanius excubitor)
Wintering in Northern Wisconsin
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ABSTRACT.—Resting metabolic rate (RMR)
represents a significant component of an animal’s
energy budget and is correlated with ecological,
physiological and life-history parameters. We measured
resting metabolic rates of 14 adult Northern Shrikes

(Lanius excubitor) wintering in northern Wisconsin
(Ashland and Bayfield Counties) over a 2-year period
(Jan–Apr 2008 and 2009). The average (6SE) RMR
was 3.09 6 0.45 ml O2/g/hr (range 2.46–3.83) and
represent the first reported RMR values for adults
of this species from the Neartic. Our RMR values were
50% higher than RMRs gathered from summer adult
Northern Shrikes in the Paleartic. These data suggest
Northern Shrikes exhibit seasonal variation in their
RMR as a potential means of winter acclimatization.
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The rates at which birds use energy may have
profound effects on fitness, thereby influencing
evolution, ecology, behavior and physiology
(McKechnie and Swanson 2010). Overwintering
of small birds (,100 g) in cold temperate regions
requires prolonged expenditure of energy in
regulating thermogenesis (Cooper and Swanson
1994). Also, foraging time is decreased in winter
due to shorter days and can be further restricted by
heavy snow or ice cover. To cope with these harsh
environmental conditions, wintering passerines
undergo seasonal acclimatization which helps
them maintain thermoregulatory homeostasis.
Seasonal acclimatization in birds is largely
a metabolic process (Swanson 1991) and meta-
bolic adjustments should play a prominent role in
explaining both seasonal and interspecific varia-
tion in cold tolerance. Winter acclimatized
passerines are better at tolerating cold than
summer ones (Cooper and Swanson 1994, O’Con-
nor 1995, Swanson 2010) and it is suspected that
birds overwintering in cold climates have a high
capacity for cold tolerance through metabolic
adjustments (Swanson 2001, Cooper 2002).

The Northern Shrike (Lanius excubitor) is
a small passerine (60–75 g) that breeds in taiga
and taiga-tundra ecotones across Canada and
Alaska, but many individuals migrate and spend
the winter in the northern USA. These individuals
remain for 4.5–5.5 months, before returning to
their breeding areas (Cade and Atkinson 2002;
JDP, pers. obs.). Shrikes are sit-and-wait predators
that perch near or at the tops of trees, exposed to
the rigors of the environment, where they scan for
small mammals, birds, and insects (Atkinson
1993, Atkinson and Cade 1993). In winter, they
feed on microtine rodents, and occasionally, birds
(Cade 1967, Cade and Atkinson 2002). Basal
metabolic rate been determined for a few summer
individuals from the Palearctic (Kendeigh et al.
1977), and for nestlings (Cade 1967), but no
metabolic data for adults of this species has been
gathered in the Nearctic. Metabolic data on
Northern Shrikes would be useful to assist in
understanding any physiological adjustments they
make to survive harsh winter environmental
conditions. In addition, it would assist conserva-
tionists in making better predictions on how this
species’ range may change during periods of rapid
climate change (Bradshaw and Holzapfel 2006).
The role of winter temperature and the interplay
between temperature and metabolism in affecting
bird distributions is unclear (Root 1988) and

currently under further investigation (Canterbury
2002, Swanson and Garland 2008). Thus our
objective was to provide measures of metabolic
data for adult Northern Shrikes inhabiting the
Nearctic.

METHODS

We captured Northern Shrikes in Ashland and
Bayfield counties (46u 349 N, 90u 589 W) located
in northern Wisconsin from 1 February–6 April
2008 and 22 January–13 April 2009.

Because the winter ranges of the two potential
subspecies (invictus and borealis) overlap in our
study area, we cannot be certain of the subspecies
we studied. The Northern Shrike is distributed
widely across the Holarctic, and their taxonomy is
unresolved both in North America and across the
Paleartic (Patten and Unitt 2002). Depending on
the authority, there are 18–20 recognized sub-
species divided into two to four groups (Cade and
Atkinson 2002). In North America they are listed
as one variable subspecies, L. e. borealis but some
authorities recognize two subspecies, borealis and
invictus (Cade and Atkinson 2002).

Decadal (2000–2009) winter monthly (Jan, Feb,
Mar and Apr) average temperatures, wind speed,
and snowfall for the area were as follows:
temperature (211, 28.3, 22.8, 4.2uC), wind
speed (13.5, 8.5, 10.5, 14.5 kph) and snowfall
(40.1, 31.5, 30.7, 15.2 cm) (www.NOAA.gov).
Birds were caught during the afternoon hours
(1400–1700 hrs) using a round Potter trap baited
with live mice (Peromyscus sp.; Craig 1997). In
the field, age and fat deposits were determined by
a combination of molt and plumage features (Pyle
1997, Brady et al. 2009) and using the well-
established Kaiser method (Pyle 1997), respec-
tively. Sex was determined genetically by using
DNA from a breast feather (see Brady et al. 2009).
After field measurements, shrikes were trans-
ported to the laboratory (,25 min) and body mass
was determined to the nearest 0.1 g using
a portable electronic balance (Scout II, Ohaus
Corp., Parsippany, NJ, USA). Shrikes were
then housed in avian cages at room temperature
(20–25uC) without food or water.

Ecophysiologists use basal metabolic rate
(BMR) for comparisons of energetics among
species, or across seasons, measured as ml O2

consumed/g/hr (Hudson et al. 2013). Theoretically,
BMR is the minimum metabolic rate required for
maintenance in endotherms and is measured under
a suite of conditions (e.g., within an animal’s
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thermoneutral zone, under post-absorptive
digestive conditions, see McNab 1997). There is
some concern that BMR can never be achieved in
the laboratory, so the term resting metabolic rate
(RMR) is often used, even when BMR conditions
are met (Swanson 2010). We report our values as
RMR instead of BMR, but because the terms are
closely linked and BMR predominates the litera-
ture, we use BRM in the discussion when
comparing our results.

Laboratory Metabolism Measurements.—Resting
metabolic tests were performed at night (2200–
0400) (rest-phase), $4 hrs post capture in order to
minimize captivity effects on metabolic rate
(Warkentin and West 1990). Birds were fasted
for at least four hours prior to rest-phase
measurements. We determined the metabolic rate
of Northern Shrikes by measuring their oxygen
consumption (VO2) at stable air temperatures of
30uC. Birds were placed in 1.5-L glass metabolic
chambers, which were equipped with a wire
platform affixed over a container of mineral oil.
Each chamber was located inside an insulated
cabinet in which the temperature was controlled
using a Pelteir device. The temperature was
controlled within 1.0uC and monitored using
a thermocouple thermometer (TC-1000, Sable
Systems International, North Las Vegas, NV,
USA). Each bird was placed in the chamber for
90 min, the first 30 min was used for equilibra-
tion, followed by 60 min test in which the
minimum 10-min period was used for oxygen
consumption. An open-circuit respirometry system
was utilized to measure metabolic rates and VO2

was recorded with an oxygen analyzer (FoxBox
Respirometry System, Sable Systems International,
North Las Vegas, NV, USA). Flow rates of dry,
CO2-free air of 600–620 ml/min were maintained
upstream of the metabolic chambers for all tests
using a precision rotameter (model FL-3802,
OMEGA Engineering Inc., Stamford, CT, USA).
The rotameter was calibrated 61% accuracy
using a soap bubble meter. These flow rates
provided changes in oxygen content between
influx and efflux gas of 0.4–0.8% and maintained
oxygen content of efflux gas above 20.1%. The
oxygen analyzer was referenced against incurrent
gas before and after each measurement period in
order to correct for any drift in the baseline.
Oxygen consumption was calculated as steady
state VO2 and corrected for standard temperature
and pressure (Depocas and Hart 1957, Hill 1972:
equation 2). Prior to metabolic measurements,

chambers were checked for leaks by momentarily
monitoring efflux gas flow rates with a rotameter.
Leaks would have been evident as a marked
decrease flow rate from the upstream rotameter;
no leaks were detected in our chambers. After
metabolic tests, birds were banded with an
aluminum USFWS band and a unique series of
color bands (for other studies). Shrikes were
released at the site of capture the following day
(#17 hrs after being caught).

RESULTS

We caught 14 adult Northern Shrikes, seven
in 2008 and 2009, respectively. Eleven of the
14 individuals were sexed genetically, three were
not. Of these, nine were males and two were
females. The average mass was 67.6 6 1.5 g
(range 60.5–74.7 g) and the average RMR was
3.09 6 0.45 ml O2/g/hr consumed (range 2.46–
3.83) (Table 1). There was no correlation between
body size and RMR (r 5 0.05). Winter birds (Jan–
21 Mar) showed no measurable (or observable)
body fat whereas spring birds (.21 Mar)
displayed various levels of fat deposits likely
associated with premigratory condition (Table 1).

DISCUSSION

Our mean RMR value of 3.09 ml O2/g/hr for
adult wintering Northern Shrikes in the Neartic
is greater than that reported from breeding
L. excubitor excubitor in the Palearctic, 0.81 ml
O2/g/hr (Kendeigh et al. 1977) and 2.01 ml O2/g/hr
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TABLE 1. Resting metabolic rates of 14 adult Northern

Shrikes caught in northern Wisconsin (Ashland, Bayfield

counties), in winter and early spring of 2008 and 2009.

Sex Mass O2 ml/min Fata Date

Male 60.5 3.318 0 29 Feb

Male 62.6 3.088 0 27 Feb

Unknown 62.7 3.829 0 5 Feb

Female 64.4 3.032 2 10 Apr

Male 64.5 2.483 0 22 Jan

Male 64.5 2.463 1 30 Mar

Unknown 67.5 3.122 1 6 Apr

Male 68.5 2.853 1 1 Apr

Male 69.7 3.277 3 13 Apr

Male 70.2 3.010 2 8 Apr

Male 71.0 3.307 0 18 Mar

Female 72.1 2.774 4 7 Apr

Unknown 73.5 3.719 2 28 Mar

Male 74.7 3.012 0 1 Feb

a
Kaiser scoring index, 0–8 (Pyle 1997).
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(Bennett and Harvey 1987), but neither of these
studies report sample size or methods. Cade (1967)
reported a BMR of 2.0 ml CO2/g/hr from 10
Northern Shrike nestlings (12 days post-hatching)
and concluded that this value was likely very close
to adult birds (based on Lasiewski and Dawson
1967). Using Cade’s measured value of 2.0 ml
CO2/g/hr in 12-day old chicks and a respiratory
quotient of 0.8 (Gessaman and Nagy 1988) this
converts to 2.5 ml O2/g/hr. Thus, our value of 3.03
ml O2/g/hr is a 21% increase in winter relative to
summer in Northern Shrikes. Basal metabolic rate
is thought to be closely tied to phylogeny
(Freckleton et al. 2002, Swanson 2010) and the
closest relative of L. excubitor in the Nearctic is the
Loggerhead Shrike (L. ludovicianus). Fortunately,
the BMR from summer individuals for this species
has been determined and is reported to be 1.79 ml
O2/g/h (Weathers et al. 1984). In addition, if BMR/
RMR is close between these two congeners, RMR
for winter birds in this study is more than 50%
higher than summer Loggerhead Shrikes.

Laboratory acclimation experiments have
shown that temperature can influence BMR, with
it increasing during cold acclimation, and de-
creasing during warm acclimation (Swanson
2010). Winter acclimatization is primarily a met-
abolic response in birds and results in an increased
ability to sustain high levels of shivering thermo-
genesis over prolonged periods, although it is
unknown if increases in BRM contributes to
increases in cold tolerance (Swanson 2010).
Raising BMR is one way many small passerines
survive and acclimatize to winter conditions in
temperate zones. For example, many but not all
birds show an increased BMR seasonally in
apparent response to the low temperatures en-
countered during the winter (Dawson et al. 1985,
Cooper 2002, Liknes et al. 2002, McKechnie
2008). Seasonal variation in BMR from both
captive and wild birds ranges from 5–120%
(Swanson 2010), with the maximum degree of
seasonal variation in BMR for wild birds being
64% (documented for House Sparrows, Passer
domesticus; Arens and Cooper 2005). Due to their
small size, and ecological habits (e.g., predatory,
perched in exposed places), we suspect Northern
Shrikes exhibit seasonal variation in BRM as well,
with higher rates in winter compared to summer.

A central goal of ecological and evolutionary
physiology is to understand how animals partition
energy resources and to identify sources of
selection potentially responsible for variation in

maintenance requirements, such as BMR (Elgar

and Harvey 1987, Ricklefs et al. 1996, Lovegrove
2000). The Northern Shrike is a small (,80 g)

predatory species that spends the winter perched
in exposed places, and faces many thermal and

ecological challenges. For example, thermal

conductance is inversely related to body size in

birds, thus any given level of cold exposure

should represent a greater cold challenge to small

birds than to large ones (Aschoff 1981, Swanson

2001). More research focusing on obtaining BRM

from breeding Northern Shrikes is needed before

we can fully interpret and understand our

metabolic data from wintering individuals. Lastly,

studies examining seasonal morphological and

behavioral adjustments wintering shrikes under-

take would be welcomed.
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