Since 1998, a study of the reproductive ecology of Sabine’s Gulls *Larus sabini* has been carried out at the East Bay Migratory Bird Sanctuary, Southampton Island, Nunavut, Canada (64°01’N, 81°47’W). Sabine’s Gulls nest there among ponds in wet coastal tundra areas, up to c. 1 km from shore (Stenhouse *et al.* 2001). Lesser Snow Geese *Anser caerulescens* generally nest on drier ground further inland, a few km from shore (Reed *et al.* 1987). After hatching, Snow Geese take their broods to the shore of the bay and pass through the areas favoured by nesting Sabine’s Gulls. In 2001, the peak movement of Snow Goose families occurred from 3-11 July, and Sabine’s Gulls hatched from 6-19 July, so that the geese passed through the area while Sabine’s Gulls were still incubating. This temporal overlap in habitat use was observed in each year of this study (1998-2001).

Sabine’s Gull behaviour was observed at focal nests in 2000 and 2001, from canvas blinds placed c. 100m from the nest. During a 3-hour observation period on 9 July 2001, a Snow Goose family passed through the area, walking along a pond edge directly at a Sabine’s Gull nest. The goose family approached to within 2 m of the nest before the incubating gull reacted. The gull flew up briefly, repeatedly swooping at the head of the leading adult goose, before returning to the nest. The goose family retreated, but remained close to the nest (within 5m). Just as the gull settled down on the eggs, the leading adult goose strode back towards the nest and aimed a single, forceful peck at the back of the incubating gull. The Sabine’s Gull flew up again and swooped at the goose, which rejoined the rest of its family as they moved away. Once they had retreated to c. 10m, the gull returned to the nest to find one egg completely broken, presumably crushed under the gull itself, due to the force of the blow. After examining the egg closely, the gull consumed the contents and removed the shell fragments before settling back on the nest. It remained in incubation until the end of the observation period. On inspection of the nest following the observation period, one remaining egg was severely crushed, although the shell membrane did not appear to be ruptured, and the other was undamaged. The crushed egg disappeared from the nest on 10 July. The remaining egg hatched successfully on 13
July, and, as is usual for this species, the entire family left the nest area the following day.

In general, Sabine’s Gulls do not consume their own eggs if they fail to hatch (Abraham 1986). The event described here constitutes the only interaction of its kind recorded in over 240 hrs of observation at Sabine’s Gull nests in East Bay, suggesting that these events are relatively rare. Due to the scarcity of researchers in the Arctic, however, interactions such as this are unlikely to be witnessed and their incidence may be considerably more common than this observation suggests. Where the breeding ranges of these species overlap, Sabine’s Gulls probably always faced the risk of such interactions. However, the massive increase in Snow Goose populations across the Arctic in recent decades (Ankney 1996; Abraham & Jeffries 1997), including Southampton Island (Reed et al. 1987), may have led to an increase in the likelihood of agonistic interspecific interactions. The harsh environment in which Sabine’s Gulls breed, the shortness of the season and low opportunity for re-laying (Day et al. 2001), and the extreme variability in interannual predation and reproductive success (Stenhouse et al. 2001) all suggest that each breeding attempt will be of considerable importance in an individual’s lifetime reproductive success. The loss of eggs in any year, but particularly in a low predation year, may have a heavy impact on the lifetime reproductive success of affected individuals.

I sincerely thank the community of Coral Harbour for permission to work in East Bay, Southampton Island, Nunavut, and H.G. Gilchrist for the opportunity to work on Sabine’s Gulls. I am indebted to Rachel Bryant for assistance in the field, and to G.J. Robertson, J.M. Hipfner and C.J. Camphuysen for useful comments that improved an earlier draft.


In East Bay, Southampton Island, Nunavut, Canada, lopen families Sneeuwganzen Anser caerulescens door de broedgebieden van Vorkstaartmeeuwen Larus sabini. Er wordt een waarneming beschreven van een nestelende Vorkstaartmeeuw die bij herhaling probeert een familie ganzen uit de omgeving van het nest te verdrijven. De gevechten leidden tot een gebroken en een gebarsten ei. Het derde ei kwam normaal uit, terwijl de inhoud van het gebroken ei door de meeuw werd geconsumeerd. Het verlies van eieren bij de Vorkstaartmeeuw door dergelijke interacties, zeker in een jaar waarin de natuurlijke predatie laag is, heeft negatieve consequenties voor het reproductieve succes van de soort. De recentelijk sterk toegenomen populaties Sneeuwganzen kunnen dan ook tot steeds grotere schade leiden. (CJC)

Received 12 December 2002, accepted 1 February 2003. Corresponding editor: Kees (C.J.) Camphuysen