Biodiversity Research Institute
Biodiversity Research Institute
Show menu Hide menu
Marine Bird Program
Marine Bird Program

There is no single definition for marine birds, but it includes species that live in saltwater or interact closely with the marine environment on a regular basis. For our purposes, this includes seabird, shorebird, and coastal bird species. Marine birds are found across the globe, from the poles to the tropics, where they live at the interface between air, land, and sea (or ice). The harsh conditions found in these environments have caused unique adaptations in their physiology and morphology and require enormous flexibility in life history strategies.

Program Director:
Iain Stenhouse, Ph.D. 

Why Study Marine Birds?

Some of the evolutionary traits that make marine birds well suited to their environment, however, also make them vulnerable to extinction. Many marine bird species are considered threatened or endangered at both global and continental scales. Around the world, marine birds face multiple ecological and environmental stressors, including habitat loss and alteration, disturbance, hunting, interactions with commercial fisheries, oil spills, persistent pollutants, ocean acidification, and other issues associated with climate change.

As such, marine birds are considered useful indicators of the general health of the marine ecosystem, and they play an increasingly important role in assessments of marine health and in conservation and marine spatial planning exercises.

BRI focuses its research efforts on meeting the conservation needs of marine birds, and using these species as bioindicators to evaluate the health of individuals, populations, and ecosystems. Below, we have grouped our primary areas of research emphasis into three nonexclusive areas: (1) contaminants monitoring; (2) movement studies; and (3) surveys and population monitoring.

Contaminants Monitoring

Contaminants Monitoring

Marine birds are regularly exposed to chemical pollutants, where exposure may be acute or chronic. The impacts of pollutants, such as heavy metals, organochlorines, hydrocarbons, and plastics, may occur at the individual or the population level. In the 1960s and '70s, many coastal and marine fish-eating species were subject to eggshell thinning as a direct result of exposure to the insecticide DDT. Since then, marine birds have been shown to be useful “bioindicators” of coastal and marine ecosystem health because they are generally conspicuous, easily observed, long-lived, and wide-ranging. They are often at the top of their food chain where pollutants are accumulated over time. Studying contaminants in conjunction with tracking marine bird movements and migrations can highlight problem geographical areas or indicate contaminant exposure at particularly critical life stages.

Below is a selection of representative marine bird contaminant research projects: 

  • Evaluating mercury exposure in a broad range of shorebird species breeding at sites across the North American Arctic from Alaska to Nunavut
  • Evaluating the spatial and temporal patterns of mercury exposure in a group of sentinel marine bird species breeding in the Gulf of Maine
  • Evaluating Northern Gannet exposure to polycyclic aromatic hydrocarbons (PAHs)



Movement Studies

Movement Studies


Much of what we know about marine birds has been gleaned from studies of birds during breeding, when they are tied to land. Banding, including color-banding, has traditionally been used to gain information about marine bird movements. Recent and continuing innovations in technology, however, have opened up increasing opportunities to track marine birds across the world’s oceans in space and time. In the last decade, the development of smaller tracking devices has profoundly changed our understanding of the ecology of marine birds, many of which spend the bulk of their lives well out at sea.

At BRI, we use an array of tracking methods (nanotags, geolocators, satellite transmitters) to track the movements of a variety of marine bird species. Birds fitted with nanotags can be remotely tracked regionally, while birds carrying satellite transmitters are remotely tracked on a global scale. Off the mid-Atlantic region of the U.S., we are currently involved in the capture and tagging of vulnerable marine bird species to track their annual movements in relation to federally-designated Wind Energy Areas (WEAs). Tracking data of this kind will assist in identifying hotspot areas consistently used by seabirds in this region of the Atlantic continental shelf where the nation’s first offshore wind development is most likely to occur.

Below is a selection of representative marine bird movement research projects:

  • Tracking the annual migration and winter movement patterns of vulnerable marine bird species (Northern GannetsRed-throated Loons, and Surf Scoters) wintering off the mid-Atlantic region of the U.S.
  • Tracking the annual migration of Black Guillemots breeding in Northern Alaska and their movements in relation to changes in the ice edge
  • Tracking the annual movements and migration of vulnerable marine bird species (Black Skimmers, Brown Pelicans, Great Egrets) in the aftermath of the Deepwater Horizon oil spill
  • Tracking shorebird migration



Surveys and Population Monitoring

Surveys and Population Monitoring

Evaluating the conservation status of bird populations is difficult at the best of times, but gathering reliable data on the abundance and distribution of marine birds at sea is an enormously challenging exercise. We employ a series of traditional and innovative techniques to achieve this, including the first broad-scale use of high-definition videography in aerial surveys across the mid-Atlantic region of the continental shelf. This remote-sensing technique uses an array of high-definition cameras mounted to the belly of a small aircraft to capture video footage of the area, in a well-defined strip transect. Experienced biologists later examine all wildlife species present on screen during review of the footage and identify them to species or closest taxonomic grouping. This technique has a number of distinct advantages over traditional observational aerial surveys. The aircraft is able to fly at a much greater altitude, for example, completely removing the issue of disturbance often caused by low-flying aircraft. Furthermore, the digital data is archivable, should it require further review at a later date, and an estimate of the height of each flying animal can be calculated, which is particularly important in assessments related to offshore wind development.

Below is a selection of representative marine bird survey and population monitoring research projects:

  • Evaluating the abundance and spatio-temporal distribution of marine wildlife (mainly seabirds, marine mammals, sea turtles) across the mid-Atlantic continental shelf region over two years using high-definition digital aerial surveys
  • Evaluating the abundance and spatio-temporal distribution of marine wildlife (mainly seabirds, marine mammals, sea turtles) in the mid-Atlantic WEAs over two years using traditional boat-based surveys
  • Modeling the abundance and distribution of marine wildlife across the mid-Atlantic continental shelf region to identify hotspots of consistent use on the continental shelf
  • Assessing the distribution and abundance of migratory birds using the offshore New York waters of Lake Erie using traditional aerial surveys
  • Assessing the external oiling of migratory birds following the Deepwater Horizon oil spill
  • Assessing the effects of offshore wind energy development on seabird foraging guilds on the East coast of the United States




Data Management and Other Studies

In addition to the research listed above, BRI has also conducted projects focused on assessment of previously collected data and standardizing data collection protocols:
  • Assessment of colonial waterbird and shorebird data for coastal islands and peninsulas in the Northeast Region, and identification of important sites and data gaps
  • Developing standardized protocols for monitoring nesting colonial waterbirds in the U.S. Fish and Wildlife Service’s Region 5
  • Developing standardized data collection protocols for offshore aerial bird surveys of the Great Lakes
  • Appraisal of the conservation status of the Ancient Murrelet for the Committee on the Status of Endangered Wildlife

Program Director
Iain Stenhouse, Ph.D.
207-839-7600 x210

Program Staff
Kevin Regan

Contributing BRI Staff
Andrew Gilbert
Dustin Meattey
Lucas Savoy

Photo Credits: Black Skimmers in flight © Daniel Poleschook; Study Subjects: Breeding Northern Gannets © Joyce Amsden; Black Guillemot © Carsten Egevang, ARC-PIC; Storm Petrel © iStock images; Black Skimmers © Daniel Poleschook; Semipalmated Sandpiper and Dunlin © iStock image. Category Photos: Geolocators and banding bird © BRI-Jennifer Goyette; Illustration courtesy HiDef, Inc.
Biodiversity Research Institute